The Soil Moisture Active and Passive Mission (SMAP) ## Dara Entekhabi¹, Eni Njoku², Peggy O'Neill³, Kyle McDonald², Michael Spencer², Kent Kellogg² (1) Massachusetts Institute of Technology, Cambridge, MA, USA (2) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (3) NASA Goddard Space Flight Center, Greenbelt, MD, USA SMAP is one of four first-tier missions recommended by the NRC Earth Science Decadal Survey Report. SMAP will provide global views of Earth's soil moisture and surface freeze/thaw state, introducing a new era in hydrologic applications and providing unprecedented capabilities to investigate the cycling of water, energy and carbon over global land surfaces. The target launch date for SMAP is March 2013. ### **Science Objectives:** - Global, high-resolution mapping of soil moisture and its freeze/thaw state to: - Link terrestrial water, energy and carbon cycle processes - Estimate global water and energy fluxes at the land surface - Quantify net carbon flux in boreal landscapes - Extend weather and climate forecast skill - Develop improved flood and drought prediction canability ## Soil moisture and freeze/thaw state are primary environmental controls on Evaporation and Net Primary Productivity ## Terrestrial Water, Energy and Carbon Cycle Processes SMAP measurements of soil moisture and freeze-thaw will provide an integrated measure of critical controls on the rate of continental water and energy cycles and associated constraints on ecosystem processes. Decreasing water content imposes increasing constraints to CO_2 exchange, as do seasonal and episodic freezing. These temperature and moisture controls relate directly to land-atmosphere latent energy and water exchange, vegetation productivity, and sequestration of atmospheric CO_2 . # SMAP is the first L-band combined active/passive mission providing *both* high-resolution and frequent revisit observations ### **SMAP Mission Architecture** #### · Orbit: - Sun-synchronous, 6 am/6pm nodal crossing - 670 km altitude #### ·Instruments: - L-band (1.26 GHz) radar - >Polarization: HH, VV, HV - >SAR mode: 1-3 km resolution (degrades over center 30% of swath) - ≽Real-aperture mode: 30 x 6 km resolution - L-band (1.4 GHz) radiometer - »Polarization: V, H, U - >40 km resolution ## Instrument antenna (shared by radar & radiometer) - >6-m diameter deployable mesh antenna - Conical scan at 14.6 rpm - >incidence angle: 40 degrees - o Creating Contiguous 1000 km swath - o Swath and orbit enable 2-3 day revisit - Mission Ops duration: 3 years #### L-band radiometer provides coarseresolution (40 km) high accuracy soil moisture for climate modeling and prediction - L-band radar provides high resolution (1-3 km) to accurately measure freeze/thaw transitions in boreal landscapes - Combined radar-radiometer soil moisture at intermediate (10 km) resolution provides high resolution and accuracy for hydrometeorology and weather prediction - Frequent global revisit (~3 days, 1-2 days for boreal regions) at high spatial resolution (1-10 km) enables critical applications in hydrologic prediction, flood monitoring, and human health ## **Science and Applications** Predictability of seasonal climate is dependent on boundary conditions such as sea surface temperature (SST) and soil moisture — Soil moisture is particularly important over continental interiors High resolution soil moisture data will improve numerical weather prediction (NWP) over continents by accurately initializing land surface states Delivery of flash-flood guidance to weather forecast offices is dependent on the availability of soil moisture estimates and observations SMAP will provide realistic and reliable soil moisture observations that will potentially open a new era in drought monitoring and decision-support Mean growing season onset for 1988 – 2002 derived from coarse resolution SSM/I data SMAP will complement the Orbiting Carbon Observatory (OCO) mission by providing important information on the land surface processes that control land-atmosphere carbon source/sink dynamics. ## **Science Data Products** | Data Product | Description | | | |----------------|--|---|--| | L1B_S0_LoRes | Low Resolution Radar σ° in Time Order | | | | L1C_S0_HiRes | High Resolution Radar σ° on Earth Grid | Global Mapping L-Band
Radar and Radiometer | | | L1B_TB | Radiometer T _B in Time Order | | | | L1C_TB | Radiometer T _B on Earth Grid | | | | L2/3_F/T_HiRes | Freeze/Thaw State on Earth Grid | | | | L2/3_SM_HiRes | Radar Soil Moisture on Earth Grid | High-Resolution and Frequent-Revisit | | | L2/3_SM_40km | Radiometer Soil Moisture on Earth Grid | Science Data | | | L2/3_SM_A/P | Radar/Radiometer Soil Moisture on Earth Grid | | | | L4_F/T | Freeze/Thaw Model Assimilation on Earth Grid | Observations+Model | | | L4_4DDA | Soil Moisture Model Assimilation on Earth Grid | Value Added Science Data | | ### **SMAP Mission Requirements** SMAP mission requirements have been developed from Hydros heritage and extensive community interaction through science workshops | Scientific Measurement Requirements | Instrument Functional Requirements | Mission
Functional
Requirements | |---|---|---| | Soil Moisture: -4% volumetric accuracy in top 5 cm for vegetation water content < 5 kg m², Hydrometeorology at 10 km; Hydroclimatology at 40 km Freeze/Thaw State: Capture feveezethaw state transitions in integrated develation-soil continuum with 2-day | LBand Radiometer Polarization: V, H, U; Resolution: 40 km; Relative accuracy*: 1.5 k LBand Radar. Polarization: VV, HH, HV, Resolution: 10 km; Relative accuracy*: 0.5 dB for VV and HH Constant incidence angle** between 35* and 50* LBand Radar. Polarization: HH; Resolution: 3 km; Relative accuracy*: 0.7 dB (1 dB per channel if 2 channels are used); | DAAC data
archiving and
distribution.
Field validation
program.
Integration of data
products into
multisource land
data assimilation. | | precision, at the spatial scale of landscape
variability (3 km). | Constant incidence angle** between 35° and 50° | | | Sample diurnal cycle at consistent time of day
Global, 3-4 day revisit
Boreal, 2 day revisit | Swath Width: 1000 km
Minimize Faraday rotation (degradation factor at L-
band) | Orbit 670 km,
circular, polar, sun
synchronous,
~6am/pm equator
crossing | | Observation over a minimum of three annual cycles | Minimum three-year mission life | Three year
baseline
mission*** |